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Abstract
Background: Oxidative and nitrosative stress have been involved in gentamicin-induced
nephrotoxicity. The purpose of this work was to study the effect of S-allylmercaptocysteine, a garlic
derived compound, on gentamicin-induced oxidative and nitrosative stress and nephrotoxicity. In
addition, the in vitro reactive oxygen species scavenging properties of S-allylmercaptocysteine were
studied.

Results: S-allylmercaptocysteine was able to scavenge hydroxyl radicals and singlet oxygen in vitro.
In rats treated with gentamicin (70 mg/Kg body weight, subcutaneously, every 12 h, for 4 days),
renal oxidative stress was made evident by the increase in protein carbonyl content and 4-hydroxy-
2-nonenal, and the nitrosative stress was made evident by the increase in 3-nitrotyrosine. In
addition, gentamicin-induced nephrotoxicity was evident by the: (1) decrease in creatinine
clearance and in activity of circulating glutathione peroxidase, and (2) increase in urinary excretion
of N-acetyl-β-D-glucosaminidase, and (3) necrosis of proximal tubular cells. Gentamicin-induced
oxidative and nitrosative stress and nephrotoxicity were attenuated by S-allylmercaptocysteine
treatment (100 mg/Kg body weight, intragastrically, 24 h before the first dose of gentamicin and 50
mg/Kg body weight, intragastrically, every 12 h, for 4 days along gentamicin-treatment).

Conclusion: In conclusion, S-allylmercaptocysteine is able to scavenge hydroxyl radicals and
singlet oxygen in vitro and to ameliorate the gentamicin-induced nephrotoxicity and oxidative and
nitrosative stress in vivo.
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Background
Reactive oxygen species (ROS) and reactive nitrogen spe-
cies (RNS) have been implicated in several renal diseases
[1-8] including the renal damage induced by the antibi-
otic gentamicin (GM) [9-19]. GM induces superoxide
anion (O2

-), hydrogen peroxide (H2O2), and hydroxyl
radical (HO) production from renal mitochondria
[13,14]. In addition, H2O2 generation [15], lipoperoxida-
tion [16,17], and the content of nitrotyrosine [10-12], and
protein carbonyl [10,18] are increased and that of reduced
glutathione is diminished [18] in renal cortex from GM-
treated rats. Moreover, the administration of several com-
pounds with antioxidant properties, ROS scavengers, and/
or antioxidant enzymes are able to ameliorate the severity
of GM-induced renal damage [9,10,16-19]. In addition,
the kidneys from GM-treated rats are more vulnerable to
ROS because of they are deficient in the antioxidant
enzymes Mn-superoxide dismutase (Mn-SOD) [10,17],
glutathione peroxidase (GPx) [17], glutathione reductase
(GR) [10], and catalase (CAT) [17].

On the other hand, S-allylmercaptocysteine (SAMC)
(CH2=CH-CH2-S-S-CH2-CH-NH2-COOH) is one of the
water soluble organosulfur compounds found in aged gar-
lic extract (AGE) which is obtained by ethanol extraction
of sliced garlic bulbs [20]. It has been postulated that
SAMC may be one of the active compounds responsible
for the protective effect of AGE observed in several exper-
imental models associated to oxidative stress [10,21-27].
It has been clearly shown that SAMC has in vitro [21,22]
and in vivo [23] antioxidant properties. SAMC is able to
(a) inhibit lipoperoxidation [22,23] and low density lipo-
protein oxidation [21] and (b) scavenge 1,1-diphenyl-2-
picrylhydrazyl radical [22]. Moreover, SAMC pretreat-
ment protects liver against the damage induced by aceta-
minophen [23-25], carbon tetrachloride [25,26], and D-
galactosamine [26].

Based on the above mentioned data, the hypothesis was
made that SAMC could ameliorate GM-induced oxidative
and nitrosative stress and renal damage. In this paper the
ROS scavenging properties of SAMC, and the effect of this
compound on GM-induced (a) renal damage, (b) oxida-
tive and nitrosative stress, and (c) on activity of antioxi-
dant enzymes (Mn-SOD, GPx, GR, and CAT) in rats are
presented. Renal damage was evaluated by measuring
glomerular and tubular function and by histological anal-
ysis [3,6,7,10]. Nitrosative stress was evaluated by measur-
ing nitrated proteins by immunohistochemistry using
antibodies against 3-nitrotyrosine (3-NT) [1,2,7,10-12].
Oxidative stress was evaluated by measuring protein carb-
onyl content (by immunohistochemical [27] and spectro-
photometric methods [10,28]) and 4-hydroxy-2-nonenal
(4-HNE) protein adducts (by immunohistochemistry
[29,30]). Protein oxidation by immunohistochemistry

was performed using antibodies against dinitrophenol
(DNP) [27].

Results
In vitro ROS scavenging properties of SAMC
SAMC was able to scavenge hydroxyl radicals and singlet
oxygen (1O2) in a dose-dependent way, these effects
become significant at 0.3 mM and 1.25 mM, respectively
(Figs. 1A and 1B). In contrast, SAMC was unable to scav-
enge superoxide anion and hydrogen peroxide: Fig. 1 [see
Additional file 1].

In vivo studies
Body weight, food intake, and urinary volume
Body weight and food intake were not statistically differ-
ent among the four groups of rats at the end of study
(ANOVA, p = 0.3194 and 0.3842, respectively, Table 1).
Urinary volume increased significantly in the GM group,
and SAMC was unable to prevent this increase in the
GM+SAMC group (Table 1).

Ability of SAMC to scavenge hydroxyl radical (A) and to quench singlet oxygen (B)Figure 1
Ability of SAMC to scavenge hydroxyl radical (A) and to 
quench singlet oxygen (B). Data are mean ± SEM. Bars with 
different letter are significantly different (P < 0.001). n = 3–4.

0

25

50

75

100

0 0.007 0.015 0.03 0.06 0.12 0.25 0.5 1.25

b

b

b

b b

b

a

aa

SAMC (mM)

O
H

.  P
R

O
D

U
C

T
IO

N
 (

%
)

0

25

50

75

100

0 0.001 0.03 0.125 0.5 1.25 2.5 5

a a
a

a a

b

b

b

SAMC (mM)

1 O
2 

P
R

O
D

U
C

T
IO

N
 (

%
)

A

B

Page 2 of 13
(page number not for citation purposes)



BMC Clinical Pharmacology 2004, 4 http://www.biomedcentral.com/1472-6904/4/5
Markers of glomerular and tubular damage
Creatinine clearance decreased 55% and blood urea nitro-
gen (BUN) increased 2.3 fold in the GM group compared
to the control (CT) one (Fig. 2A and 2B). SAMC prevented
the decrease in creatinine clearance and attenuated the
increase in BUN in the GM+SAMC group. GM increased
significantly urinary excretion of N-acetyl-β-D-glucosami-
nidase (NAG) and total protein (Figs. 3A and 3B). The
increase in both parameters was prevented by SAMC.
Blood GPx activity diminished 61% in the GM group and
the treatment with SAMC was able to prevent this reduc-
tion in the GM+SAMC group (Fig. 3C). Creatinine
clearance, BUN, urinary excretion of both NAG and total
protein, and blood GPx activity were similar in the CT and
SAMC groups (Figs. 2 and 3).

Histological analysis
Rats treated with GM showed vacuolization and necrosis
in the proximal tubular epithelial cells (Fig. 4). The per-
centage of damaged tubular area in the GM group was of
77 ± 7% and the treatment with SAMC significantly
decreased this percentage in the GM+SAMC group to 38 ±
5% (p = 0.021). There were not renal histological altera-
tions in CT and SAMC groups (Fig. 4). Therefore, SAMC
treatment attenuated not only functional impairment but
also structural alterations induced by GM.

3-nitrotyrosine (3-NT), dinitrophenol (DNP), and 4-hydroxy-2-
nonenal (4-HNE) immunostaining
Representative images showing an increase in 3-NT, DNP,
and 4-HNE immunostaining in GM-treated rats are
showed in Figs. 5, 6, and 7, respectively. These increases

Creatinine clearance (A) and blood urea nitrogen (B) on day 5 in the four groups of rats studied: CT: control group, GM: gentamicin group, SAMC: S-allylmercaptocysteine group, and GM+SAMC: gentamicin+S-allylmercaptocysteine groupFigure 2
Creatinine clearance (A) and blood urea nitrogen (B) on day 
5 in the four groups of rats studied: CT: control group, GM: 
gentamicin group, SAMC: S-allylmercaptocysteine group, and 
GM+SAMC: gentamicin+S-allylmercaptocysteine group. Data 
are mean ± SEM. Groups with different letter are significantly 
different (P < 0.01). n = 4–5.
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Urinary excretion of NAG (A) and total protein (B), and blood GPx activity (C) in the four groups of rats studiedFigure 3
Urinary excretion of NAG (A) and total protein (B), and 
blood GPx activity (C) in the four groups of rats studied. 
Data are mean ± SEM. Groups with different letter are signif-
icantly different (P < 0.001). n = 4–5.
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Table 1: Body weight, food intake, and urinary volume in the 4 groups of rats studied on day 5

Control Gentamicin SAMC Gentamicin+SAMC

Body weight (g) 259 ± 2.1 252 ± 4.3 263 ± 4.7 255 ± 4.3
Food intake (g/24 h) 21.2 ± 2.3 18.0 ± 1.8 21.8 ± 0.4 18.6 ± 2.2
Urinary volume(ml/24 h) 6.5 ± 1.1 18.6 ± 2.6a 7.1 ± 1.0 22.1 ± 2.4a

Values are mean ± SEM; SAMC, S-allylmercaptocysteine. ap < 0.01 vs. CT, n = 4–5

Representative light microscopic findings in the renal cortex from the four groups of rats studied on day 5Figure 4
Representative light microscopic findings in the renal cortex from the four groups of rats studied on day 5. GM-treated rats 
showed necrosis and vacuolization in the proximal tubular epithelial cells. Histological damage decreased in the GM+SAMC 
group. H&E. 200×.
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were attenuated by SAMC pretreatment in the GM+SAMC
group (Figs. 5, 6, 7). Only proximal tubules were positive
for 3-NT, DNP, and 4-HNE.

Spectrophotometric assay of protein carbonyl content
GM treatment induced a 1.5-fold increase in the protein
carbonyl content in renal cortex compared to the CT
group (Fig. 8). The increase induced by GM was prevented
by SAMC (GM+SAMC group). The protein carbonyl con-
tent was similar in CT and SAMC groups.

Antioxidant enzymes in renal cortex
The activities of Mn-superoxide dismutase (Mn-SOD),
glutathione peroxidase (GPx), glutathione reductase
(GR), and catalase (CAT) decreased 38%, 44%, 10%, and
47%, respectively in GM-treated rats (Table 2). The
decrease in Mn-SOD did not reach statistical significance.
Mn-SOD activity was similar in CT and GM+SAMC
groups. SAMC treatment attenuated but not prevented sig-
nificantly the decrease in GPx activity in the GM+SAMC
group. SAMC prevented the decrease in GR activity in the
GM+SAMC group. CAT activity decreased 36% and 47%,
respectively in SAMC and GM+SAMC groups. Cu,Zn-SOD

Immunohistochemistry for 3-nitrotyrosine (3-NT) in renal cortexFigure 5
Immunohistochemistry for 3-nitrotyrosine (3-NT) in renal cortex. 3-NT immunostaining is increased in GM group and this 
increase is partially prevented in GM+SAMC group.
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remained unaffected by the GM-treatment (Table 2). The
activities of all antioxidant enzymes measured in this
work were not affected by SAMC (SAMC vs. CT group)
(Table 2).

Discussion
GM is an aminoglycoside widely used in clinical practice
for the treatment of gram-negative infections. GM is rap-
idly excreted, predominantly by glomerular filtration and
the reabsorption of a small but notable amount of drug by
the proximal tubule results in accumulation within the
renal cortex; this preferential binding is responsible for

nephrotoxicity [31]. The mechanism by which GM
induces nephrotoxicity remains unknown; however, it has
been postulated that oxidative and nitrosative stress are
involved in this process [13]. It has been shown that O2

-

[11], OH [32] and H2O2 [15], are involved in renal dam-
age induced by GM. In addition, GM induces H2O2 gener-
ation by mitochondria [14].

Interestingly, iron chelators such as deferoxamine and 2,3
dihydrobenzoic acid are able to prevent GM-induced
nephrotoxicity suggesting the toxic role of iron in this dis-
ease probably by catalyzing the OH production via the

Immunohistochemistry for 4-hydroxy-2-nonenal (4-HNE) in renal cortexFigure 6
Immunohistochemistry for 4-hydroxy-2-nonenal (4-HNE) in renal cortex. 4-HNE immunostaining is increased in GM group 
and this increase is partially prevented in GM+SAMC group.
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Immunohistochemistry for dinitrophenol (DNP) in renal cortexFigure 7
Immunohistochemistry for dinitrophenol (DNP) in renal cortex. DNP immunostaining is increased in GM group and this 
increase is partially prevented in GM+SAMC group.

Table 2: Antioxidant enzymes activity in renal cortex from the four groups of rats studied on day 5

Control Gentamicin SAMC Gentamicin+SAMC

Mn-SOD (U/mg protein) 7.4 ± 0.4 4.6 ± 0.7 7.8 ± 1.2 7.9 ± 1.4
Cu,Zn-SOD (U/mg protein) 26.7 ± 2.8 28.1 ± 2.2 24.1 ± 1.1 28.6 ± 3.4
GPx (U/mg protein) 0.16 ± 0.007 0.09 ± 0.007a 0.14 ± 0.009 0.12 ± 0.007a

GR (U/mg protein) 0.037 ± 0.002 0.03 ± 0.002a 0.039 ± 0.002 0.041 ± 0.0007b

CAT (k/mg protein) 0.55 ± 0.04 0.29 ± 0.03a 0.35 ± 0.01a 0.26 ± 0.03a

Values are mean ± SEM; ap < 0.05 vs. CT, bp < 0.001 vs GM n = 4–5. CT, control; GM, gentamicin; SAMC, S-allylmercaptocysteine; Mn-SOD, 
manganese-dependent superoxide dismutase; Cu,Zn-SOD, copper/zinc-dependent superoxide dismutase; GPx, glutathione peroxidase; GR, 
glutathione reductase; CAT, catalase. NOTE: The decomposition of H2O2 by CAT contained in the samples follows a first-order kinetics as given by 
the equation k = 2.3/t logAo/A where k is the first-order reaction rate constant, t is the time over which the decrease of H2O2 due to CAT activity 
was measured (15 s), and Ao and A are the optical densities at times 0 and 15 s, respectively.
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Haber-Weiss reaction [32]. GM also induces O2
- produc-

tion from mesangial cells in culture [35]. This increase was
suppressed by an inhibitor of NADPH oxidase or an
inhibitor of nitric oxide (NO) synthase suggesting the role
of both proteins in O2

- production by GM in mesangial
cells [33]. The role of OH has been evident by using OH
scavengers such as dimethylthiourea, sodium benzoate
and dimethyl sulfoxide [32]. The role of O2

- has been
shown using exogenous administration of superoxide dis-
mutase [34] or M40403 [11], a synthetic low molecular
weight compound with SOD mimetic activity, which
selectively removes O2

-. In addition, it has been found
that GM enhances NO generation by glomeruli and
mesangial cells [35,36].

The inhibition of NO production exacerbates GM nephro-
toxicity suggesting that the enhancement of NO produc-
tion is very important to prevent exacerbation of renal
damage in GM-induced nephrotoxicity [37,38]. On the
other hand, NO is able to react with O2

- to produce perox-
ynitrite anion which itself is very toxic [39,40]. In addi-
tion, there is direct evidence that peroxynitrite is able to
produce 1O2 after reacting with linoleic acid
hydroperoxide [41], suggesting a potential 1O2-depend-
ent mechanism that may contribute to cytotoxicity
mediated by lipid hydroperoxides and peroxynitrite reac-
tions in biological systems.

In addition, it has been appreciated that OH-like activities
are generated from peroxynitrite [42]. The production of
OH is frequently proposed to occur by the metal-cata-
lyzed Haber-Weiss reaction. We are tempting to speculate
that OH in GM-induced nephrotoxicity may come from

both peroxynitrite and Haber-Weiss reaction. Interest-
ingly, the OH scavenger dimethylthiourea also attenuates
GM-induced in vivo lipid peroxidation [32] indicating the
role of OH in lipid peroxidation.

The increase in O2
- and NO production in GM-induced

nephrotoxicity may lead to peroxynitrite formation and
could explain the increase in nitrosative stress in these
animals.

We found that SAMC has in vitro scavenging properties;
particularly we found that SAMC scavenges OH and 1O2
(Fig. 1). These properties could be involved in the ability
of SAMC to decrease lipid peroxidation which we evalu-
ated by measuring 4-HNE. This is an α,β unsaturated
aldehyde commonly used as a marker of lipid peroxida-
tion due to it is produced in the peroxidative metabolism
of arachidonic or linoleic acids [29]. HNE rapidly modi-
fies proteins on several amino acids residues leading to
the loss of protein functions. Antibodies against 4-HNE
have been successfully used for the immunodetection of
lipid peroxidation in kidney sections [2,29]. Interestingly,
SAMC was also able to decrease 3-NT immunostaing in
vivo suggesting that SAMC itself (or some of the metabo-
lites) is able to scavenge in vivo peroxynitrite and/or
another RNS involved in protein nitration. Immunohisto-
chemical detection of 3-NT is a useful marker of
nitrosative stress [2,7], since it has been shown that this
compound is formed by the reaction of RNS with proteins
[reviewed in [40]]. Surprisingly, SAMC was unable to
scavenge O2

- and H2O2. SAMC was also able to prevent
the increase in protein oxidation (measured by the
increase in protein carbonyl content). Our data suggest
that SAMC could be one of the compounds of AGE that
may contribute to the ability of this extract to ameliorate
GM-induced nephrotoxicity [10]. In a previous paper we
found that S-allylcysteine, another compound found in
AGE and structurally related to SAMC, also is able to pre-
vent GM-induced nephrotoxicity [43].

The in vivo antioxidant ability of SAMC is associated with
the improvement in GM-induced glomerular and tubular
alterations. GM induces necrosis of proximal tubular cells
but the structure of glomeruli is not altered. Vasoconstric-
tion induced by ROS is involved in the decrease in
glomerular filtration rate and ROS and RNS produce cel-
lular injury and necrosis via several mechanisms, includ-
ing lipoperoxidation and protein modification. The above
information may explain why antioxidants, and SAMC in
particular, are able to prevent GM-induced glomerular
and tubular dysfunction. In our rats SAMC was able to
ameliorate the decrease in creatinine clearance and blood
GPx as well as the enhancement in BUN and in the urinary
excretion of both total protein and NAG. SAMC also was
able to ameliorate the histological damage. All the above

Carbonyl content in the renal cortex from the four groups of rats studied on day 5Figure 8
Carbonyl content in the renal cortex from the four groups of 
rats studied on day 5. Groups with different letter are signifi-
cantly different (P < 0.001). n = 4–5.
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data clearly indicate the ability of SAMC to ameliorate
GM-induced renal damage. Interestingly, SAMC was una-
ble to prevent the increase in urinary volume induced by
GM, this could be explained, in all probability, by the fact
that the histological damage still is present in GM+SAMC
rats (38% of damaged tubular area). This indicates that
the amelioration in the histological damage is not enough
to attenuate the increase in urinary volume.

The ameliorative effect of SAMC was not due to the
enhancement of endogenous antioxidant defenses. It was
found that SAMC itself was unable to modify the activity
of Mn-SOD, Cu,Zn-SOD, GPx and GR but it decreased
CAT activity (Table 2). SAMC was able to prevent the
decrease in the antioxidant enzymes Mn-SOD, GPx and
GR which also could contribute to the protective effect of
SAMC.

Conclusions
The protective effect of SAMC on GM-induced nephrotox-
icity was associated with the decrease in oxidative and nit-
rosative stress in vivo and the preservation of Mn-SOD,
GPx, and GR activities in renal cortex. Our data support
that SAMC is one of the compounds of AGE with antioxi-
dant properties in vitro and in vivo. The ability of SAMC to
scavenge OH and 1O2 may explain, at least in part, the in
vivo antioxidant properties of SAMC. The potential protec-
tive effect of SAMC in humans receiving GM merits study.

Methods
Reagents
S-allylmercaptocysteine (SAMC, Lot # 020328) was
kindly provided by Wakunaga Pharmaceutical Co., Ltd.
(Hiroshima, Japan). GM was from Schering-Plough
(Mexico City, Mexico). Rabbit anti-3-nitro-L-tyrosine (3-
NT) polyclonal antibodies (Catalogue #06-284) were
from Upstate (Lake Placid, NY, USA). Mouse anti-4-
hydroxy-2-nonenal (4-HNE) monoclonal antibodies (#
Catalogue 24325) were from Oxis International Inc.
(Portland, OR, USA). Goat anti-dinitrophenol (DNP) pol-
yclonal antibodies (Catalogue # J06) were from Biomeda
Corporation (Foster City, CA, USA). Anti-rabbit Ig horse-
radish peroxidase antibody (Catalogue # NA-934) and
anti-mouse Ig horseradish peroxidase antibody (Cata-
logue # NIF-825) were purchased from Amersham Life
Sciences (Buckinghamshire, England). Donkey anti-goat
horseradish peroxidase antibody (Catalogue # SC2020)
was from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA,
USA). Commercial kits to measure creatinine and urea
were from Spinreact (Girona, Spain). Glutathione reduct-
ase, β-nicotinamide adenine dinucleotide phosphate,
reduced form (NADPH), 2,4-dinitrophenylhydrazine
(DNPH), histidine, ascorbic acid, D-ribose, tetramethoxy-
propane, deferoxamine mesylate, thiobarbituric acid,
xylenol orange, butylated hydroxytoluene, iron (III) chlo-

ride (FeCl3), N,N-dimethyl-4-nitrosoaniline were from
Sigma-Aldrich (St. Louis MO, USA). Ferrous ammonium
sulfate and sodium hypochlorite were from JT Baker
(Xalostoc, Edo. México, México). All other chemicals were
reagent grade.

In vitro experiments
Hydroxyl radical assay
The ability of SAMC to scavenge OH was conducted in the
Fe3+-EDTA-H2O2-deoxyribose system [44]. The system
contained different amounts of SAMC, or an equivalent
volume of distilled water for the control, 0.2 mM ascorbic
acid, 0.2 mM FeCl3, 0.208 mM EDTA, 1 mM H2O2, 0.56
mM deoxyribose, and 20 mM phosphate buffer (pH 7.4).
Hydroxyl radicals were generated by incubating the mix-
ture at 37°C for 60 min. The iron salt (FeCl3) was mixed
with EDTA before addition to the reaction mixture. The
extent of deoxyribose degradation by the formed OH was
measured directly in the aqueous phase by the thiobarbi-
turic acid test [45].

Singlet oxygen assay
The production of 1O2 by sodium hypochlorite (NaOCl)
and H2O2 was determined by using a spectrophotometric
method [46] with minor modifications in which N,N-
dimethyl-p-nitrosoaniline was used as selective acceptor
of 1O2. The bleaching of N,N-dimethyl-p-nitrosoaniline
was monitored spectrophotometrically at 440 nm. The
assay mixture contained 45 mM sodium-phosphate buffer
(pH 7.1), 10 mM histidine, 10 mM NaOCl, 10 mM H2O2
and 50 µM N,N-dimethyl-p-nitrosoaniline. The total vol-
ume reaction was 2.0 ml and incubated at 30°C for 40
min. The extent of 1O2 production was determined by
measuring the decrease in the absorbance of N,N-dime-
thyl-p-nitrosoaniline at 440 nm. The relative scavenging
efficiency (% inhibition in production of 1O2) was esti-
mated from the difference in absorbance of N,N-dime-
thyl-p-nitrosoaniline with and without the addition of
increasing amounts of SAMC.

Superoxide anion assay
Xanthine-xanthine oxidase system was used to determine
the O2

- scavenging activity of SAMC. O2
- production and

xanthine oxidase activity were measured as NBT reduction
and uric acid production, respectively [47] using a DU-
64O series Beckman spectrophotometer. Tubes without
SAMC were taken as 100% of NBT reduction.

Hydrogen peroxide assay
A solution of 75 µM H2O2 was mixed with different con-
centrations of SAMC (1:1 v/v) and incubated for 3.5 h at
room temperature. After this, H2O2 was measured by the
method described by Long et al. [48]. Briefly, 9 volumes of
4.4 mM butylated hydroxytoluene in HPLC-grade metha-
nol were mixed with 1 volume of 1 mM xylenol orange
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and 2.56 mM ammonium ferrous sulfate in 0.25 M H2SO4
to give the "working" FOX reagent. Ninety microliters of
the H2O2-SAMC solutions were pippeted in 1.5 mL
Eppendorf tubes and mixed with 0.01 mL of HPLC-grade
methanol immediately followed by the addition of 0.9
mL of FOX reagent, vortexed for 5 seconds and then
incubated at room temperature for 10 minutes. The tubes
were centrifuged for 15,000 × g for 10 minutes and
absorbance at 560 nm was reading against methanol
blank.

In vivo experiments
Experimental design
Male Wistar rats (Harlan Teklad, México City, México) ini-
tially weighing 240–250 g were used. Experimental work
was approved by CONACYT (#40009-M) and followed
the guidelines of Norma Oficial Mexicana (NOM-ECOL-
087-1995). All animals had free access to water and
commercial rodent diet (Harlan Teklad, catalogue
2018S), and were randomly divided in four groups (n = 5
rats/group) as follows: (1) CT, injected subcutaneously
(s.c.) with saline and intragastrically (i.g.) with
carboxymethylcellulose 0.5%, (2) GM, treated s.c. with
GM and i.g. with carboxymethylcellulose 0.5%; (3)
SAMC, treated with SAMC; and (4) GM+SAMC, treated
with GM and with SAMC. GM treated rats received 70 mg/
Kg b.w./s.c./12 h for 4 days and SAMC treated rats
received a single dose of 100 mg/Kg b.w./i.g. 24 h before
the first dose of GM or saline, and 50 mg/kg b.w./i.g./12
h for 4 days alongside GM-treatment or saline [23]. SAMC
was given 30 minutes before every GM injection. SAMC
was suspended in 0.5% carboxymethylcellulose at a 10
mg/ml concentration. Rats received 5.0 ml/Kg/12 h (50
mg SAMC/Kg/12 h). The dose of SAMC was chosen from
the previous work of Sumioka et al. [23]. During the study
rats were maintained with a 12-h light:dark cycle in stain-
less steel metabolic cages to collect urine. On day 5, the
animals were sacrificed by decapitation and blood was
collected to obtain serum and measure creatinine, BUN
and GPx activity. NAG and total protein were measured in
24-h urine. One kidney was removed to obtain cortex
samples for histological and immunohistochemical stud-
ies and the other kidney was removed to obtain cortex and
measure the activity of total SOD, Mn-SOD, CAT, GPx,
and GR as well as the carbonyl content of proteins.

Markers of glomerular and tubular damage
The markers of glomerular damage, creatinine and urea,
were measured using commercial kits. Creatinine clear-
ance was calculated with the standard formula [49], and
BUN was obtained by correcting the urea value by a 2.14
factor [50]. As markers of tubular damage, we measured
urinary excretion of NAG and total protein and blood GPx
activity. NAG activity was measured using p-nitrophenyl-
N-acetyl-β-D-glucosaminide as substrate [17], total pro-

tein was measured by a turbidimetric method [6], and
blood GPx activity was measured using GR and NADPH
in a coupled reaction [10].

Histological analysis
Thin slices of kidney tissue with cortex and medulla were
fixed by immersion in buffered formalin (pH 7.4),
dehydrated and embedded in paraffin. Sections (4 µm)
were stained with hematoxilin and eosin (H&E) [7]. The
histological profile of twenty proximal tubules randomly
selected per rat (5 rats per experimental group) was
recorded, using a Leica Qwin Image Analyzer (Cambridge,
England). The percentage of tubular area with histopatho-
logical alterations like swelling, cytoplasmic vacuoliza-
tion, desquamation or necrosis was obtained. The
percentage of damaged area of GM and GM+SAMC
groups was compared.

Protein carbonyl content
Protein carbonyl groups are relatively stable marker of
protein oxidation by ROS [28]. Carbonyl moieties in kid-
ney tissues from all experimental groups were assessed
using both spectrophotometric and immunohistochemi-
cal detection of the formation of the stable dinitrophenyl
(DNP) hydrazone product which is formed when protein
carbonyl groups reacts with DNPH. The
spectrophotometric method has been described previ-
ously [28] and the immunohistochemical method will be
described in the next section.

Immunohistochemical localization of 3-NT, DNP, and 4-HNE
For immunohistochemistry, 4 µm sections were deparaff-
ined with xylol and rehydrated with ethanol. Endogenous
peroxidase was quenched/inhibited with 4.5% H2O2 in
methanol by incubation for 1.5 h at room temperature.
The sections used for DNP immunohistochemistry were
incubated with 0.2% DNPH in 2 N HCl for 60 min at
room temperature in absence of light and then were
extensively washed. Nonspecific adsorption was mini-
mized by leaving the sections in 3% bovine serum albu-
min in phosphate buffer saline for 30 min. Sections were
incubated overnight with a 1:700 dilution of anti-3-NT
antibody [7] or with a 1:500 dilution of anti-DNP anti-
body or with a 1:100 dilution of anti-4-HNE antibody.
After extensive washing with phosphate buffer saline, the
sections were incubated with a 1:500 dilution of a perox-
idase conjugated anti-rabbit Ig antibody (for 3-NT) or
with a 1:500 dilution of a peroxidase conjugated anti-goat
Ig or anti-mouse IgG (for DNP and 4-HNE, respectively)
for 1 h, and finally incubated with hydrogen peroxide-
diaminobenzidine for 1 min. Sections were counter-
stained with hematoxilin (for 3-NT and 4-HNE) or with
methyl green (for DNP) and observed under light micros-
copy. All the sections from the four studied groups were
incubated under the same conditions with the same anti-
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bodies concentration, and in the same running, so the
immunostaining was comparable among the different
experimental groups.

Antioxidant enzymes in renal cortex
Total SOD activity was assayed by a previously reported
method using nitroblue tetrazolium (NBT) [17]. To meas-
ure Mn-SOD activity, Cu,Zn-SOD was inhibited with
diethyldithiocarbamic acid (DDC) [17]. Cu,Zn-SOD
activity was obtained by subtracting the activity of the
DDC-treated samples from that of total SOD activity. GPx
activity was assayed as previously described [17] and GR
activity was assayed measuring the disappearance of
NADPH [10]. CAT activity was assayed by a method based
on the disappearance of H2O2 [6].

Statistics
Results are expressed as the mean ± SEM. Data were ana-
lyzed by one-way ANOVA followed by Bonferroni's mul-
tiple comparisons. Non-paired t-test was used to compare
the quantitative histological damage data using the soft-
ware Prism 3.02 (GraphPad, San Diego, CA, USA). P ≤
0.05 was considered statistically significant.
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